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Classification based on association rules is considered to be effective and advantageous in many cases. However, 
there is a so-called "sharp boundary" problem in association rules mining with quantitative attribute domains. This 
paper aims at proposing an associative classification approach, namely Classification with Fuzzy Association Rules 
(CFAR), where fuzzy logic is used in partitioning the domains. In doing so, the notions of support and confidence 
are extended, along with the notion of compact set in dealing with rule redundancy and conflict. Furthermore, the 
corresponding mining algorithm is introduced and tested on benchmarking datasets. The experimental results 
revealed that CFAR generated better understandability in terms of fewer rules and smother boundaries than the 
traditional CBA approach while maintaining satisfactory accuracy. 
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1. Introduction 

Classification and association rule mining23 are two 
major areas of research and applications nowadays in 
knowledge discovery. An association rule (AR) is of the 
form, X⇒ Y where X and Y are sets of data items. The 
goal of association rule mining is to generate certain 
associative relationships between data items with the 
degrees of confidence and support greater than user 
specified thresholds. The Apriori23 algorithm is a well-
known algorithm in this field. A typical association rule 
application is market baskets analysis describing, for 
example, the customers’ buying behavior such as “Fruit 
⇒ Meat” meaning that customers who bought fruit also 
tended to buy meat, which reflects association between 
occurrences of data items.   

Classification is used to find a logical description, 
namely a classifier, which results from training datasets 
with predetermined targets, and could group unlabeled 
datasets. Existing research efforts have proposed a 

number of approaches and systems 3,6,8,12,14,17,18,21,29,32,33. 
A worth-noting type of approaches is classification 
based on association rules, aimed at building a classifier 
by discovering a small set of rules to form a so-called 
associative classifier. That is, an associative classifier is 
composed of only those association rules of the form 
X⇒C where C is a class label treated as a special case 
of Y in association rules. For instance, given a customer 
database with each record characterized by such 
attributes as income, car-owned and travel-plan, a 
classification rule discovered may be “90�  of high-
income customers who own a Jeep are subscribes of 
Plan B; 3% of all customers have both characteristics.”30. 
Apparently, such a rule could be important to a 
marketing manager who may concentrate on promoting 
Plan B among high-income top-brand car owners. There 
exist several ways of building associative classifiers 
based on association rules mining, such as CBA3, 
CMAR32, CPAR33 and GARC8 in light of accuracy and 
understandability. 
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However, when the data of concern are associated 
with quantitative domains such as income, age, price, 
etc., which are very common in many real applications, 
association rule mining usually needs to partition the 
domains in order to apply the Apriori-type method. 
Thus, a discovered rule X ⇒ Y reflects association 
between interval values of data items. Examples of such 
rules are “Fruit[1-5kg] ⇒ Meat[5-20$]”, “Income[20-
50k$]⇒ Age[20-30]”, and so on. Notably, the mining 
result is often dependent upon how the intervals are 
partitioned, especially for data values around interval 
boundaries. That is the so-called “sharp boundary” 
problem. Subsequently, the result of associative 
classification may also be affected in terms of accuracy 
and understandability.  

Among those domain discretization techniques for 
association rule mining, fuzzy logic is regarded suitable 
to deal with the “sharp boundary” problem by providing 
a flexible and intelligent remedy1,2,20. This gives rise to 
the notion of fuzzy association rules (FAR). It is 
worthwhile to mention that classical association rules 
(AR’s) are special cases of fuzzy association rules 
(FAR’s). Moreover, the semantics of a fuzzy association 
rule is richer and of certain natural language nature, 
which are deemed desirable. For example, “low-quantity 
Fruit ⇒ normal-consumption Meat” and “medium 
Income ⇒ young Age” are fuzzy association rules, 
where X’s and Y’s are fuzzy sets with linguistic terms 
(i.e., low, normal, medium, and young). In a similar line 
of thinking, building an associative classifier based 
upon fuzzy association rules is considered meaningful 
in twofold: one is the need to mine large datasets with 
quantitative domains; the other is to generate 
classification rules with more general semantics and 
linguistic expressiveness. In this context, a rule X⇒C 
in the built classifier reflects a classification criterion 
with X in general being a combination of fuzzy 
sets/linguistic terms, meaning that a record with data 
items compatible with X could be identified to class C. 
As a matter of fact, the previously mentioned example, 
“high Income & top-brand Car ⇒  Plan B” is of such a 
nature. 

This paper is aimed at dealing with the “sharp 
boundary” problem for quantitative domains and 
providing an approach to building an associative 
classification based on fuzzy association rules (namely 
CFAR). Apparently, classical associative classification 
approaches and algorithms are incapable, and 

extensions are necessary. Notably, the proposed 
approach shall address a number of important issues of 
concern as follows. First, while fuzzy sets in forms of 
linguistic terms (e.g., young, meddle, old) are defined on 
a quantitative domain of attribute (e.g., domain of Age), 
a precise age value in the original dataset may belong to 
a fuzzy set at a degree in [0, 1], which is different from 
the case of partitioned intervals where the belonging is 
crisp: either 0 or 1. This leads to a need to reformulate 
the notions of support and confidence. Second, unlike 
the case of (crisp) partitioning where a value only 
belongs to one and only one interval, it is normal that a 
value may belong to more than one fuzzy set, each with 
a degree. Such “multiple belongings” may have certain 
impact on the support/confidence degrees. Third, since 
the resultant classifier usually consists of fuzzy 
classification rules, more rules may be relevant in 
identifying a data record. These issues of concern will 
be discussed in light of two important criteria, namely 
accuracy and understandability. By accuracy we mean 
the rate of identifying data/records into correct classes, 
and by understandability we mean that fewer rules are 
more preferable (in addition to the enhanced 
expressiveness of fuzzy classification rules). 

The paper is organized as follows. Sec. 2 introduces 
the background notions including association rules and 
fuzzy association rules. Sec. 3 presents new measures of 
support and confidence and related notions in the fuzzy 
context. In Sec. 4, the proposed approach CFAR is 
discussed with corresponding algorithmic details. Sec. 5 
shows data experiments in comparison with a typical 
associative classification approach CBA. 

2. The Background 

2.1. Association rules 

Classically23, given a transactional dataset D and a set of 
data items I = {I1, I2 …, Im}, an association rule (AR) is 
of the form: X ⇒ Y, expressing the semantics that 
“occurrence of X is associated with occurrence of Y”, 
where X and Y are disjoint collections of data items (i.e., 
X and Y are called itemsets, X,Y⊂I, and X∩Y=∅). Also, 
X is referred to as the antecedent of an AR and Y as 
consequent of the AR. Let |D| be the number of 
transactions (interchangeably referred to as records, 
otherwise indicated where necessary) in D, and ||X|| 
(||XY||) be the number of transactions containing X (XY), 
the degrees of support and confidence (denoted as 
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Dsupp and Dconf respectively) for X⇒ Y are defined as: 
Dsupp(X ⇒ Y) = ||XY||/|D| and Dconf(X ⇒ Y) = 
||XY||/||X||. An example of an association rule in 
supermarket basket transactions is “Fruit ⇒  Meat, 
with Dsupp = 20% and Dconf = 80%” meaning that 
“20% of the customers bought Fruit and Meat 
simultaneously, and 80% of the customers who bought 
Fruit also tended to buy Meat”. Such association rules 
are also referred to as Boolean ARs, since the 
association concerned is the correspondence of the 
occurrence states, each being a binary value 0 or 1. 
There have been many efforts proposed to discover 
Boolean ARs in various ways11,22,25,26,, among which the 
Apriori algorithm16 is usually deemed as a typical one. 

In addition to binary data values in Boolean 
association rules, categorical or generally quantitative 
data values are commonly encountered in many real 
applications. As shown in Table 1, for instance, Age and 
Height are quantitative attributes, whereas Bald is a 
categorical attribute.  

Table 1: Database (D) with Continuous 
Domains. 

D Age Height Bald … 
ID1 31 170 1 … 
ID2 25 180 0 … 
ID3 16 182 0 … 
ID4 52 165 1 … 
… … … … … 

 
While the Apriori algorithm is effective and 

efficient, it can hardly be used directly in discovery of 
quantitative association rules. A commonly used way is 
to partition the domains and therefore introduce new 
attributes with intervals. In doing so, the original 
transactional dataset D could be transformed into a 
binary database D′  which is exemplified in Table 2. 
Accordingly, quantitative ARs such as “Age(65,100] & 
Height(180,190] ⇒ Bald” can be discovered using a 
Apriori-type algorithm20, 21.Table 2: Database ( D′ ) 
Transformed from D. 
D′  Age(0,27] Age(27,65] Age(60,100] Bald … 
ID1 0 1 0 1 … 
ID2 1 0 0 0 … 
ID3 1 0 0 0 … 
ID4 0 1 0 1 … 
… … … … … … 
 

2.2. Fuzzy sets 

Recall that a classical set is characterized by the 
membership degrees of domain elements being either 0 
or 1, representing either non-belonging or full-
belonging. By contrast, a fuzzy set 19 is characterized by 
the membership degrees of domain elements being a 
value in [0, 1], representing a gradual transition from 
“non-belonging” to “full-belonging”. In many cases, 
linguistic terms are of fuzzy nature in concept and 
usually formulated by fuzzy sets.  

Let U be the universe of discourse. Then a fuzzy set 
FS on U is:  

{( , ( )) | }FS x x x Uµ= ∈ ,  

 (1) 
where µ is the membership function reflecting a 
mapping from U to [0, 1]. Usually, there are two 
alternative ways to represent a fuzzy set FS:  

 ( ) if  is discrete

( ) | if  is continuous

i
ix U

U

x U
FS

x x U

µ

µ

∈
⎧
⎪= ⎨
⎪⎩

∑

∫
. (2) 

Conveniently, there are also several parameterized ways 
to define membership functions. Some commonly used 
function types among others are: trapezoidal, bell, 
Gaussian and triangular. A parameterized membership 
function can be defined in terms of a number of 
parameters. For example, a triangular membership 
function is specified by three parameters (a, b, c); and 
for a given value u, with known a, b, and c, the 
membership of u may be computed as 

 triangle(u;a,b,c)= max min( , ),0 .u a c u
b a c b
− −⎛ ⎞

⎜ ⎟− −⎝ ⎠
 (3) 

For example, for attribute Age, some fuzzy sets may be 
defined on its domain UAge such as Young (Y-Age), 
Middle (M-Age) and Old (O-Age), each with a 

 
Figure 1: Fuzzy Sets Y-Age, M-Age and O-Age. 
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parameterized trapezoidal membership function as 
shown in Fig. 1. 

 

2.3. Fuzzy association rules 

As indicated in subsection 2.1, domain partitioning 
could be a way in quantitative association rules mining. 
However, since the interval boundaries are sharply 
defined (i.e., the sharp boundary problem), the domain 
elements near the boundaries may be ignored or over-
emphasized in the mining process, which is usually not 
intuitive with respect to human perception. For example, 
an abstract concept such as “short” to describe a 
person’s height would be distinguished by a precise 
value such as (-, 170cm), often leading to a difficulty to 
intuitively identify nearby values such as 171 due to 
such a nature of artificial precisionization. Furthermore, 
the degrees of the elements belonging to the interval are 
not distinguishable, such as 150 and 170 being treated 
equally, which are not considered intuitively appealing. 
To cope with the problem, a flexible and transitional 
setting of the interval boundaries is regarded desirable, 
hence fuzzy logic is employed. Accordingly, for the 
data as shown in Table 1, a discovered fuzzy association 
rule (FAR) could be, for example, “O-Age & Tall 
⇒Bald”. In recent years, there have been a number of 
efforts on discovery of FARs from various perspectives 
of extension9,10,24,27,28,30. For instance, they map the 
values of quantitative attributes to memberships of 
several new attributes in forms of linguistic terms and 
then mine association rules from the new database. 
Consider attribute Age in Table 1 again, three new 
attributes (e.g. Y-Age, M-Age and O-Age) in place of 
Age may be used to constitute a new database ( D′′ ) 
with partial belongings of original attribute values to 
each of the new attributes. Table 3 illustrates an 
example of the new database obtained from the original 
database, given fuzzy sets Young (Y-Age), Middle (M-
Age) and Old (O-Age) as characterized by membership 
functions shown in Fig. 1. 

Table 3: Database ( D′′ ) with Fuzzy Items. 

D′′  Y-Age M-Age O-Age Bald …
ID1 0.8 0.4 0.1 1 …
ID2 0.9 0.3 0 0 …
ID3 1 0 0 0 …
ID4 0.1 0.2 0.8 1 …

… … … … … …
 

Generally, for original database D with attributes I = 
{I1, I2 …, Im}, each Ik (1 k m≤ ≤ ) can be associated with 
qk fuzzy sets defined on the domain of Ik, and usually 
labeled as qk new attributes. We use }{ 1 2, ,..., kq

k k k kF I I I=  
to represent the set of fuzzy sets associated with Ik. That 
is, the new database D′′ is with respect to schema R( I ′′ ) 
where }{ 11 1 1

1 1,..., ,..., ,..., ,..., ,..., ,...,k mq qq
k k m mI I I I I I I′′ = . 

Correspondingly, the notions of support and confidence 
can be extended, for example, as follows30:  

support(X⇒Y) = XYd D
( )d Dµ

′′∈
′′∑ ,         (4) 

confidence(X⇒Y) = XY Xd D d D
( ) ( )d dµ µ

′′ ′′∈ ∈∑ ∑ . (5) 

where D′′  is the number of transactions (records) in 
database D′′ , X and Y are subsets of I ′′  (a composed 
set of fuzzy sets), ( )X dµ  and ( )XY dµ  are the degrees of 
transaction d belonging to X and Y respectively with T-
norms as conjunction operators (e.g., min), and ∑ is 
∑count operastor22. 

2.4. Normalization 

For a transaction d, its value of the kth attribute d[Ik] can 
be mapped to qk membership degrees, and we use 

( )j
k dµ  to represent the degree of d[Ik] in the jth category 

or fuzzy set of Ik.  If Ik is categorical, ( ) {0,1}j
k dµ ∈ . If 

Ik is fuzzy, 0 ( ) 1j
k dµ≤ ≤ . 

If Ik is categorical, we always have 

1
( ) 1kq j

kj
dµ

=
=∑ .                            (6) 

If Ik is fuzzy, Eq.(6) does not always hold. This may 
not be desirable in light of support counting semantics, 
as a transaction, which occurred once, is likely to be 
counted a total of greater than 1. Therefore, a 
normalization treatment is considered necessary and 
could be handled as follows: 

 k1

k

( ) ( ) if I  is fuzzy
( )

( ) if I  is categorical

kqj j
k kj j

k j
k

d d
d

d

µ µ
µ

µ
=

⎧⎪′ = ⎨
⎪⎩

∑ . (7) 

As an example, suppose I = {Age, Bald}, as mentioned 
before, where Bald is a categorical attribute with the 
domain of {0, 1} and Age is quantitative with three 
fuzzy sets {Y-Age, M-Age and O-Age}. Given a 
transaction d = {40, 1}, we have D′′  with new values as 
shown in Table 4. 
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Without normalization (Table 4), for itemset {Bald, 
Y-Age}, Dupp({Bald, Y-Age}) = 0.7, Dupp({Bald, M-
Age}) = 0.6, and Dupp({Bald, O-Age}) = 0.1. That is to 
say, this one transaction d = {40, 1} in (bald, Age) of D, 
corresponds to three itemsets in D” with their sum of 
degrees of support totaling 1.4 (= 0.7+0.6+0.1). 
Concretely, Table 4 is normalized and the resultant data 
are shown in Table 5. Note that such a normalization 
process is used in the following discussions in mining 
FARs.  

Table 4: Without Fuzzy Normalization. 

D′′  Y-Age M-Age O-Age Bald 
ID1 0.7 0.6 0.1 1 
… … … … … 

 

Table 5: After Fuzzy Normalization. 

D′′  Y-Age M-Age O-Age Bald 
ID1 0.5 0.429 0.071 1 
… … … … … 

 

3. Fuzzy Association Rules in Classification 

In classical associative classification, CBA and its 
modifications4,33 are well-known, which use an Apriori-
type association rule mining approach to generate 
classification rules. Subsequently, filters may be applied 
to the rules so as to eliminate non-interesting ones such 
as conflicts and so on. Then, a set of high confidence 
rules is selected to form a classifier.  

In a fuzzy context, a fuzzy association rule in 
classification is of the following form: 

 F⇒ C. (8) 

where F = {f1, f2, …,  fp} is the subset of I ′′ , and 
1kF F∩ ≤ , where Fk represents the set of fuzzy sets 

associated with Ik ( 1 k m≤ ≤ ). The 
restriction 1kF F∩ ≤  prevents associating meaningless 
fuzzy sets in F defined on a domain of the same 
attribute. For example, it tries to avoid FARs such as 
“Y-Age & O-Age ⇒ Bald” where Y-Age and O-Age are 
defined on the domain of a single attribute Age. C is a 
class, and it is crisp. If the degree that a record d 
belongs to fl is ( )l dµ ( 1 l p≤ ≤ ), we can define the 
degree that the record d belongs to F as 

 ( ) ( ) ( ) ( ){ }1 2min , ,...,F pd d d dµ µ µ µ= . (9) 

3.1. New measures 

Since classification rules are generally special cases of 
association rules, in both crisp and fuzzy contexts, a 
fuzzy classification rule F⇒C could be measured 
directly in terms of support and confidence as follows27: 

 support(F⇒ C) = 
( )[ ]c

Fd I C
d

D

µ
=∑

, (10) 

 confidence(F⇒ C) = 
( )[ ]

( )
c

Fd I C

Fd D

d

d

µ

µ
=

∈

∑
∑

, (11) 

where [ ]cd I  represent the class label of record d. 
 

For example, suppose F= {O-Age} and C=C1 and 
part of a database shown in Table 6. We have: 

support(F⇒ C) = 0.1 0.7 0.8 0.5
6

+ + + =35.0%, 

confidence(F⇒ C) = 
0.1 0.7 0.8 0.5

0.1 0.7 0.8 0.9 0.5 0.1
+ + +

+ + + + +
=67.7%. 

Table 6: Part of a Database 
Containing Membership. 

M-Age Class 
0.1 C1 
0.7 C1 
0.8 C1 
0.9 C2 
0.5 C1 
0.1 C2 

 
It is important to note that, with fuzzy sets defined 

on domains, a domain element may belong to more than 
one fuzzy set, each having different degrees. This fact 
may have an impact on the degrees of confidence, 
further on accuracy if classification is concerned. For 
instance, for a particular attribute defined with a fuzzy 
set in F, if there are many values whose membership 
grades are very low, then the degree of confidence for a 
rule with this attribute may be lower than that without 
those low values. For illustrative purposes, let us 
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consider a simplified case with two databases (DI and 
DII) as shown in Tables 7 and 8 respectively. 

Table 7: Database DI 

DI A Class … 
ID1 1 C1 … 
ID2 1 C1 … 
… … … … 
ID10 1 C1 … 
ID11 0 … … 
… … … … 
ID100 0 … … 

Table 8: Database DII 

DII A Class … 
ID1 1 C1 … 
ID2 1 C1 … 
… … … … 
ID10 1 C1 … 
ID11 0.1 … … 
… … … … 
ID100 0.1 … … 

 
Apparently, confidence(A⇒C1) with database DII is 
smaller than that with database DI due to the existence 
of non-zero degree values of A relating to other classes 
than C1. In other words, the dominator (i.e., Dsupp(A)) 
for DII is larger than that for DI, while the nominators 
(i.e., Dsupp(AC1)) are the same, resulting in different 
confidence degrees. On one hand, these non-zeros 
degree values reflect the extents to which elements 
belong; on the other hand, too low degree values make 
little semantic sense in light of membership grade but 
are seemingly disturbing, especially in a massive 
database with a large number of such values. Therefore, 
a cut threshold (MS ∈ [0, 1]) may be introduced to 
discard those degree values below MS in order to reduce 
the risk of losing certain rules due to low confidence 
levels caused by such a disturbance. It is worth 
mentioning, however, that setting MS is in fact a matter 
of trade-off: semantics vs. disturbance. Moreover, the 
setting needs to be made in light of accuracy in the 
context of classification. 

In line with this thought, new measures for support 
and confidence are proposed as a result of extension 
considering the cut threshold. Concretely, given MS in 
[0, 1], the degree of support is: 

Dsupp(F⇒ C) = 
( ) ( )[ ] max(0, )

c
F Fd I C

d d MS

D

µ µ
=

−⎡ ⎤⎢ ⎥∑
,      (12) 

and the degree of confidence is: 

Dconf(F⇒ C) = 
( ) ( )[ ]

( ) ( )
max(0, )

max(0, )
c

F Fd I C

F Fd D

d d MS

d d MS

µ µ

µ µ
=

∈

−⎡ ⎤⎢ ⎥
−⎡ ⎤⎢ ⎥

∑
∑

.      (13) 

For example, if MS=0.15 for data in Table 6, then we 
have: 

Dsupp(F⇒ C) = 0.5 0.7 0.8
6

+ +  = 33.3%, 

Dconf(F⇒ C) = 0.5 0.7 0.8
0.7 0.8 0.9 0.5

+ +
+ + +

 = 69.0%. 

The setting of MS can be made by users or experts 
according to their domain knowledge/expertise, though, 
supportive means and heuristics may be available upon 
relevant techniques. For instance, a data-based setting 
against accuracy was used in the experiments of this 
paper, which will be described in Sec. 5. Note that in the 
case of MS = 0, Eqs. (12) and (13) degenerate to Eqs. 
(10) and (11) respectively.  

 

3.2. Rule redundancy and conflicts 

Though fuzzy classification rules can be discovered 
using extended Apriori-type association rule mining 
techniques directly, the whole set of rules might be poor 
in quality. First, the number of rules may be too large to 
easily construct classifiers. More seriously, from the 
viewpoint of classification, there may exist conflicting 
rules and redundant rules. For example, F ⇒  C1 and 
F⇒  C2 are conflicting rules (C1 and C2 are class labels, 
and C1≠C2). F⇒  C1 and FF’⇒  C1 with Dconf (F⇒  
C1) > Dconf (FF’⇒  C1) contain redundant rules. The 
conflicting rules will lead to identifying a transaction 
into two classes, while the redundancy will result in 
some rules useless for classification. 
 
Definition 1: Given two fuzzy classification rules, ri 
and rj, ri > rj (also called ri precedes rj) if 
(1) Dconf of ri is greater than that of rj, or 
(2) their Dconfs are the same, but Dsupp of ri is greater 
than that of rj, or 
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(3) both Dconf and Dsupp of ri and rj are the same, but 
ri is generated earlier than rj. 

 
The purpose of the definition is to make sure that we 

can order any set of rules. Let R be the set of all the 
fuzzy classification rules. Obviously, given ,i jr r R∈ , 
we get either ri>rj or rj>ri. Furthermore, the relation of 
“>” is transitive. That is to say, given ,i jr r R∈ , if ri>rj, 
rj>rk, then we get ri>rk. This can be easily proven based 
upon the transitivity of arithmetic comparison involved 
in (1), (2) and (3) of Definition 1 for numeric values in 
Dconf, Dsupp, and time. Thus, rules in R can be ordered 
by “>” consisting in one and only one result. For 
illustrative purposes, suppose we get six fuzzy 
classification rules as shown in Table 9. Definition 1 
will lead to r2>r3>r5>r1>r4>r6. 

Table 9: Example of Rules. 

NO. Rules Dsupp Dconf 
r1 M-Age ,Bald⇒  C1 15% 60% 
r2 M-Age⇒  C1 21% 65% 
r3 Y-Age, Bald⇒  C1 10% 65% 
r4 Y-Age⇒  C2 14% 40% 
r5 Y-Age⇒  C1 16% 60% 
r6 Y-Age, Bald⇒  C2 8% 35% 

 
Definition 2: Given two fuzzy classification rules, ri 
and rj, i jr rf  (also rj is called inferior to ri, or ri is 
called superior to rj) if the antecedent part of ri is the 
subset of that of rj, and ri > rj. 
 

Note that the notion of “subset” is here in the 
classical sense of set inclusion for items in I′′ . For 
instance, {Bald} is a subset of {M-Age, Bald}, though 
M-Age and Bald are items both formulated in linguistic 
terms. Furthermore, the relation of “ f ” also is 
transitive. Given i jr rf and j kr rf , we get i kr rf . So we 
can represent this as i j kr r rf f . This property can be 
easily proven as well since Definition 2 involves set 
inclusion (i.e., ⊂, ⊆) and “>” of Definition 1, which are 
both transitive. 

The purpose of defining “ f ” is to identify 
redundant and conflicting classification rules. 
Given i jr rf , if the consequents of them are the same, 
then rj is redundant. If different, then rj conflicts with ri 
and it is the inaccurate one (because it is preceded by ri). 
In general, rj should not be contained in the classifier 

once it is inferior to another rule. We will explain this 
by the following example. 

Take Table 9 as an example, there exist 2 1r rf , 
5 4 6r r rf f and 3 6r rf . For simplicity, just consider 
2 1r rf  and 3 6r rf . Compared with r2, r1 is considered 

redundant because any transaction that is compatible 
with M-Age can be classified as C1 according to r2 with 
a higher level of confidence, needless of further 
considering Bald in r1. r3 conflicts with r6 because a 
transaction may be classified into two classes (e.g., C1 
and C2). We can draw similar conclusion from 

5 4 6r r rf f . Notice that there is no redundancy or 
conflicts between r4 and r3 according to the definition 
“ f ”.  

Usually, given a nonempty set R of discovered fuzzy 
classification rules, filters can be built to deal with the 
problem of redundancy and conflicts. It can be seen that 
for any R there exists a corresponding set R’ with such 
redundancy and conflicts removed.  

 
Definition 3: Given a set R of fuzzy association rules in 
classification. R’ is called a compact set of R, denoted as 
CompSet(R), if (1) r R R′∀ ∈ − , r R′ ′∃ ∈  such that 
r r′ f , and (2) ∀r’ ∈ R’, if ∃r ∈ R such that r’ f r, then 
r ∈ R−R’. 
 

Apparently, we have R’⊆R. Moreover, R’ is 
composed of those rules who are either “isolated” in R 
(i.e., to which there do no exist any other rules in R that 
are inferior or superior) or “most-superior” in R (i.e., to 
which other rules in R are inferior, if any). This is 
equivalent to Definition 3 and can be justified as 
follows. On one hand, suppose there exists a rule r1 in 
R’ who is not isolated and not most-superior. That is, 
there exists a rule r2 in R who is superior to r1. If r2 is in 
R’, then according to (2) of Definition 3, r1 ∈ R−R’, 
which is contradictory to r1 ∈ R’. If r2 is in R−R’, then 
according to (1) of Definition 3, there exists r3 ∈ R’, 
such that r3 f  r2. Based on transitivity, we have r3 f  r2 
f  r1. According to (2) of Definition 3, r1 ∈ R−R’, 
which is contradictory to r1 ∈ R’. On the other hand, let 
us look at (1) and (2) of Definition 3. For (1), if there 
exists a rule r1 that is inferior or superior to r in R−R’, 
then, the most superior one in the transitivity chain 
containing r and r1 is in R’, which is denoted as r’ in R’. 
For (2), suppose that such r ∉ R−R’, then r ∈ R’. Since 
r’ f  r, this is contradictory to r being most-superior.  
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Importantly, the rules in R’ are free of redundancy 
and conflict. First, suppose we have r1: F ⇒  C1 and r2: 
FF’⇒  C1 with Dconf (F⇒  C1) > Dconf (FF’⇒  C1). In 
classification, r2 is considered redundant in relation to r1. 
Note that r1 f  r2 because r1 > r2 and F ⊆ FF’. Then 
according to Definition 3, r2 ∉ R’ and the most superior 
rule in the chain containing r1 f  r2 will be included in 

R’. Second, suppose we have r1: F ⇒  C1, and r3: F ⇒  
C2 (C1≠C2). Since F ⊆ F, without loss of generality, 
suppose r1f r3. r3 cannot be in R’ because r3 is not most-
superior. Consider Table 9 again, R = {r1, r2, r3, r4, r5, 
r6}. With 2 1r rf , 5 4 6r r rf f and 3 6r rf , we obtain R′  = 
{r2, r3, r5}. 

Given any R, we can get the unique R′ , independent 
of the order in which the removing steps are performed. 
 
Proposition 1: The Algorithm CompSet(R) produces 
one and only one compact set R’ of any set R. 
 
Proof: The algorithm to obtain CompSet(R) is shown in 
Fig. 2. It has 3 steps: 
• Step 1 (line 1): Sort the set of generated rules R 

according to the relation “>”. 
• Step 2 (line 2-7): Delete the rules that are inferior to 

others. 
• Step 3 (line 8, 9): Return the set of the left rules. 

Step 1 is based on the definition of “>”, which 
makes sure, as mentioned above, that we can order R 
and get the corresponding result Q. Q could be regarded 
as a queue, which is ordered. Step 2 is based on the 
definition of “f ”. If there is a “f ” relation, drop the 
inferior one. In this way, we obtain a CompSet by 
definition.  

Suppose that R′  and R′′  are two CompSets of R. 
Without loss of generality, if there exists a 

rule r R R′′ ′∈ − , so r R′ ′∃ ∈ and r r′ f because R′′ is a 
CompSet. Obviously, r R′ ′′∉ , so r R′′ ′′∃ ∈  and r r′′ ′f . 
That is to say, r r′′ f and ,r r R′′ ′′∈ , which contradicts 
to the definition of CompSet. Thus, there exists no 
rule r R R′′ ′∈ − , which means R R φ′′ ′− = . Likewise, 
R R φ′ ′′− = . So we have R R′′ ′= .     
 

For illustration, we will show how the algorithm 
works for Table 9. Initially, R = {r1, r2, r3, r4, r5, r6}, and 
Q = {r2, r3, r5, r1, r4, r6}. Set r = r2, and r1 is the first one 
that is inferior to r2, so remove r1. Since neither r5 nor r6 
is inferior to r2, Q = {r2, r3, r5, r4, r6}. Secondly, set r = 
r3, which is only superior to r6, so Q = {r2, r3, r5, r4}. 
Next r = r5 and r4 is inferior to it, so Q = {r2, r3, r5}. 
Because r5 is the last of the queue, the process ends. 
Thus R’= {r2, r3, r5}. Note that the transitivity of f  
guarantees that removing inferior rules on a transitivity 
chain of rules could be carried out in any order. For 
instance, take 5 4 6r r rf f  in Table 9, the order of 
removing r4 and r6 does not affect the result of R’.  

It is worth mentioning, however, that these notions 
of redundancy and conflict are particularly relevant for 
classification and may not be of concern for association 
rules in general.  

4. Classification Based on Fuzzy Associations 

First, we extend the algorithm9 to generate fuzzy 
association rules with the new measures introduced in 
Eqs. (12) and (13) of Sec. 3.2. Then, the CompSet of the 
resultant rules is obtained. Next, the CompSet is further 
trained with the given training dataset based on a match 
measure (namely DF) between a fuzzy rule and a 
transaction.  
 
Definition 4: Given a fuzzy rule r: F ⇒ C and a 
transaction d, the confidence of classifying d with r is: 

( )* ( )FDF d Dconf rµ= .                   (14) 

where Dconf(r) is the degree of confidence for rule r as 
defined in Eq. (13) of Sec. 3.2, and ( )F dµ is the match 
that d is compatible with fuzzy set F. 
 

Given a transaction d, the rule with the highest DF 
is used to classify d. Notably, for crisp rules, the value 
of ( )F dµ  either is 1 where the rule r covers d, or is 0 
where r does not cover d. Thus, the rule r which covers 
d with the highest Dconf will be chosen to classify d, 
which is the same with CBA and GARC classifiers. 

 

Fig. 2: Algorithm CompSet. 

1 Q=sort(R) 
2 for each rule r Q∈  in sequence do 
3  for each rule r Q∈  and r r′>  in 

sequence do 
4   if r r′f  then 
5    delete r′  from Q  
6  end 
7 end 
8 R′ ={r| r Q∈ } 
9 return R′  (the CompSet of R) 
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Let R be the CompSet of the generated fuzzy rules, 
and D′′  the training dataset with fuzzy items. Our 
proposed algorithm, namely CFAR, will generate a 
classifier in the following form: 

<r1, r2, …, rn, default_class>, 
where default_class is the default class. In classifying 
an unseen transaction, sort R by DF and the first rule 
will be chosen to classify it. If there is no such rule that 
applies to the transaction, it takes on the default class. 
Concretely, algorithm CFAR is constituted by three 
procedures:  
(i) Procedure 1: Training 

The procedure for training the CompSet R is shown 
in Fig. 3, which consists of 3 steps: 

(a) Step 1 (line 2-8): calculate the DF of each rule 
and sort the rules by DF.  

(b) Step 2 (line 9-22): select the rule in sequence 
until the transaction is classified correctly. For 
each rule r, RightN and WrongN are used to 
record the number of transactions it has 
classified right and wrong, respectively. 

(c) Step3 (line 1): iterate steps 1 and 2 for each 
transaction. 

(ii) Procedure 2: Delete the “worst” rule from R and 
compute the error rate.  

We discard those rules that do not improve the 
accuracy of the classifier, including those whose RightN 
is zero, and the one with the smallest RightN 
/(WrongN+ RightN) whose RightN >0. We then 
compute and record the total number of errors that are 
made by the current classifier and the default class. This 
is the sum of the number of errors that have been made 
by all the selected rules in the classifier and the number 
of errors to be made by the default class in the training 
data. 
(iii) Procedure 3: Iterate procedures 1 and 2 until the 

error rate on training set increases. 

5. Experimental Results 

This section shows an empirical performance evaluation 
of algorithm CFAR, along with some comparisons with 
the well-known CBA algorithm4. The experiments 
consist of three parts. The first part is to compare CFAR 
with CBA classifier on accuracy. The second part is to 
discuss the impact of threshold MS on CFAR outcomes. 
In the third part, we compare CFAR with the CBA 
classifier in terms of the number of rules produced. It 
should be mentioned that all the following experiments 
are tested based on datasets from a commonly used 
benchmarking database in this field, namely UCI ML 
Repository5. Since the proposed approach and 
corresponding CFAR is to deal with the “sharp 
boundary” problem where quantitative attribute 
domains pertain, we selected 7 relevant datasets for the 
experiments and did not consider other datasets whose 
attributes are all/almost discrete. The basic information 
of the datasets is listed in Table 10.  

Table 10: Basic information of the datasets. 

 Dataset Attr. NO. of 
attr. 

NO. of tra. 
data 

NO. of tes. 
data 

1 Australian Dis., con. 14 460 230 
2 Breast Con. 10 466 233 
3 Cleve Dis., con. 13 202 101 
4 Crx Dis., con. 15 490 200 
5 German Dis., con. 20 666 334 
6 Heart Con. 13 180 90 
7 Wine Con. 13 118 60 

 
In our experiments reported below, for CFAR, we 

set the threshold of the Support (minpsup for short) to 
10%, and for the Confidence, its threshold (minpconf) is 

 

Fig. 3: Procedure 1: Training. 

1. for each d D′′ ′′∈ do 
2.  for each r R∈  do 
3.    ( ). * ( )Fr DF d Dconf rµ ′′=  
4.    r.use=0 
5.    r.RightN=0 
6.    r.WrongN=0 
7.   end for 
8.   sort R by r.DF desc 
9.   flag=0 
10.   while(flag=0) do 
11.    r=fisrt rule of R 
12.    if r.use=1 then 
13.     Break 
14.    r.use=1 
15.    if clas(r, d ′′ ) then 
16.     r.RightN++ 
17.     flag=1 
18.     break 
19.    else 
20.     r.WrongN++ 
21.     move r to the bottom 

of R 
22.  end for 
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set to be 85%. For CBA, all parameters had their default 
values. Discretization of quantitative domains was done 
using the Entropy method29, and then triangular 
membership functions were specified by the discretized 
points for fuzzy items. 

5.1. Accuracy 

Accuracy is one of the basic performance measures for 
classification algorithms. In comparing CFAR with 
CBA, we set MS=0.15, which is the default value, and 
we will discuss it in later subsection on the impact of 
this threshold. Table 11 shows the accuracy result, 
which indicates that the classification accuracy of 
CFAR is satisfactory. On average, the accuracy of 
CFAR seemed at least as good as that of CBA. 
Moreover the CFAR appeared similarly stable as CBA 
in terms of standard deviations of accuracy. These 
findings could be further justified by statistical 
significance tests.  

Table 11: Algorithms’ accuracy on CBA and CFAR  

 Dataset CBA% CFAR% 
1 Australian 87.39 87.83 
2 Breast 96.57 95.71 
3 Cleve 81.19 83.17 
4 Crx 80.50 80.00 
5 German 72.75 72.75 
6 Heart 83.33 85.55 
7 Wine 86.67 93.33 
 Mean 84.06 85.48 
 Standard deviation 7.35 7.84 

5.2. Setting of MS 

As mentioned in previous subsections, the experiment is 
conducted with a setting of MS=0.15. In this section, we 
will discuss further the impact of this setting on the 
accuracy of CFAR. MS has a slightly effect on the 
quality of the classifier produced. If MS is set too low, 
the interestingness measures perform the same with the 
typical ones, and some useful rules may not be included. 
If MS is set too high, the rules generated will not be as 
“confident” as they appear, and some interesting rules 
with high confidence may be not generated because of 
their low Support. In this experiment, with each of the 
same datasets, we set MS to different values and obtain 
the best setting of MS in yielding the highest accuracy. 
Obviously, the best setting for one dataset may be 

different from that for another dataset. To determine a 
single default setting, we chose MS=0.15, as it gives a 
satisfactory result. Table 12 shows the details. The 
result also shows that the new measures perform slightly 
better than the typical ones with a little higher average 
of accuracy. 

Table 12: Setting of MS vs. accuracy on CFAR 

Highest 
accuracy 

Dataset 

% MS 

Accuracy at 
MS=0.15 

Accuracy 
at MS=0 

Australian 88.70 0.15 88.70 87.83 
Breast 98.71 0.15 98.71 95.71 
Cleve 83.17 0.15 83.17 83.17 
Crx 80.00 0.15 80.00 80.00 
German 72.75 0.2 72.45 72.15 
Heart 85.56 0.15 85.56 83.33 
Wine 91.67 0.2 90.00 90.00 
Mean 85.79  85.51 84.60 
 

5.3. Number of rules 

MS has effect not only on the accuracy, but also on the 
numbers of rules generated by CFAR. In the above 
subsection, we obtained the settings of MS with the 
highest accuracy. In this experiment, we compare the 
number of rules generated by CBA and CFAR.  

Table 13: Number of rules generated by 
CBA and CFAR  

 Dataset CBA CFAR 
1 Australian 110 21 
2 Breast 31 13 
3 Cleve 33 28 
4 Crx 58 43 
5 German 9 7 
6 Heart 31 22 
7 Wine 13 13 
 Mean 40.7 21.0 

 
Table 13 tabulates the comparative results. Clearly, 

CFAR generated fewer rules than CBA, providing better 
understandability, even more stable performance. The 
main reason for fewer rules is that CFAR uses fuzzy 
association rules for classification. Because of smooth 
boundaries, a fuzzy rule can cover more transactions 
than a crisp one with the same original attributes and 
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discretized points. That is to say, CFAR need fewer 
rules than CBA to cover all of the transactions. In 
addition, the number of rules in CFAR could also be 
reduced by using pruning/resolution strategies such that 
certain conflicting and redundant rules could be 
dropped. 

6. Conclusion 

This paper has proposed a framework to integrate 
classification and fuzzy association rule mining. New 
interestingness measures have been presented to 
generate all fuzzy association rules in classification, and 
an algorithm, namely CFAR, has also been proposed to 
build an accurate classifier. Compared with CBA, the 
proposed approach has better understandability in terms 
of the number of rules and the smooth boundaries, while 
keeping the accuracy equally satisfactory. Our ongoing 
work now centers on exploring more properties and 
incorporating them into the rule generation process as 
pruning strategies in order to further improve 
computational efficiency.  

Acknowledgements 

The work was partly supported by the National Natural 
Science Foundation of China (70231010/70621061) and 
the Research Center for Contemporary Management, 
Tsinghua University. 

References 

1. A. W. C. Fu, M. H. Wong, S. C. Sze, W. C. Wong, W. L. 
Wong and W. K. Yu, Finding fuzzy sets for the mining of 
fuzzy association rules for numerical attributes, in Proc. 
Int. Symposium Intelligent Data Engineering Learning 
(IDEAL’98) (Hong Kong, 1998), pp. 263-268. 

2. B. C. Chien, Z. L. Lin and T. P. Hong, An Efficient 
Clustering Algorithm for Mining Fuzzy Quantitative 
Association Rules, in Proc. of the 9th Int. Fuzzy Systems 
Association World Congress (Vancouver, Canada, 2001), 
pp. 1306-1311. 

3. B. Liu, W. Hsu and Y. Ma, Integrating classification and 
association rule mining, in Proc. of the Int. Conf. on 
Knowledge Discovery and Data Mining (SIGKDD98) 
(New York, 1998), pp. 80-86. 

4. B. Liu, Y. Ma and C. Wong, Classification using 
association rules: weaknesses and enhancements, in Data 
Mining for Scientific and Engineering Applications 
(2001). 

5. C. Merz and P. Murphy, UCI repository of machine 
learning databases 
(http://www.cs.uci.edu/~mlearn/MLRepository.html, 
1996). 

6. D. Meretakis and B. Wüthrich, Extending naive Bayes 
classifiers using long itemsets, in Proc. of 5th Int. Conf. 
on Knowledge Discovery and Data Mining (San Diego, 
California, August, 1999). 

7. G. Chen and Q. Wei, Fuzzy Association Rules and the 
Extended Mining Algorithms, Information Sciences 147 
(2002) 201-228. 

8. G. Chen, H. Liu, L, Yu, Q. Wei and X. Zhang, A New 
Approach to Classification Based on Association Rule 
Mining, Decision Support System 42 (2006) 674-689. 

9. G. Chen, P. Yan and E. E.Kerre, Computationally 
Efficient Mining for Fuzzy Implication-based 
Association Rules in Quantitative Databases, Int. Journal 
of General Systems 33(2-3) (2004) 163-182. 

10. G. Chen, Q. Wei and E. Kerre, Fuzzy Data Mining: 
Discovery of Fuzzy Generalized Association Rules. in 
Recent Research Issues on Management of Fuzziness in 
Databases (Springer, Physica-Verlag, 2000). 

11. G. Chen, Q. Wei, D. Liu and G. Wets, Simple association 
rules (SAR) and the SAR-based rule discovery, 
Computers and Industrial Engineering 43 (2002) 721–
733. 

12. G. Piatetsky-Shapiro, U. Fayyad and P. Smyth, From data 
mining to knowledge discovery, in An Overview. 
Advances in Knowledge Discovery and Data Mining 
(AAAI/MIT press, 1996), pp. 1-35. 

13. H. Ishibuchi, T. Nakashima and T. Yamamoto, Fuzzy 
Association Rules for Handling Continuous Attributes, in 
Proc. of the IEEE Int. Symposium on Industrial 
Electronics (Korea, 2001), pp. 118-121. 

14. H. Lu and H. Liu, Decision tables: Scalable classification 
exploring RDBMS capabilities, in Proc. of the 26th Int. 
Conf. on Very Large Databases (Morgan Kaufmann, 
Cairo, Egypt, 2000), pp. 373–384. 

15. H. Mannila, H. Toivonen and A.I. Verkamo, Efficient 
Algorithms for discovering association rules, in KDD-94: 
AAAI Workshop on Knowledge Discovery in Databases, 
pp. 181-192. 

16. H. Toivonen, Sampling large databases for association 
rules, in Proc. of the 22nd Int. Conf. on Very Large 
Database (Bombay, India), pp. 134-145. 

17. J. Roberto and J. Bayardo, Brute-force mining of high-
confidence classification rules, in Proc. of the Third Int. 
Conf. on Knowledge Discovery and Data Mining (AAAI 
Press, Newport Beach, California, 1997). 

18. J. R. Quinlan, C4.5: Programs for Machine Learning 
(Morgan Kaufmann, 1993). 

19. L.A. Zadeh, Fuzzy sets, Information Control 8 (1965) 
338-353. 

20. L. J. Mazlack, Approximate clustering in association 
rules, in Proc. of 19th Int. Conf. of the North American 
Fuzzy Information Processing Society-NAFIPS 2000 
(Atlanta, 2000), pp.256-260. 

21. N. Friedman, D. Geiger and M. Goldszmidt, Bayesian 
network classifier, Machine Learning 29 (1997) 131–
163. 

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 262 - 273

Published by Atlantis Press 
Copyright: the authors

272



Zuoliang Chen, Guoqing Chen 
 
 

22. R. Agrawal and R. Srikant, Fast algorithm for mining 
association rules, in Proc. of the 20th VLDB Conf. 
(Morgan Kaufmann, Santiago, Chile, 1994), pp. 487–
499. 

23. R. Agrawal, T. Imielinski and A. Swami, Mining 
association rules between sets of items in large databases, 
in Proc. of the ACM SIGMOD Int. Conf. Management of 
Date (Washington, 1993), pp. 207-216. 

24. R. B. V. Subramanyam and A. Goswami, Mining fuzzy 
quantitative association rules, Expert Systems 23 (2006) 
212-225. 

25. S. Brin, R. Motwani and J. Ullman, Dynamic itemset 
counting and implication rules for market basket data, in 
Proc. of ACM-SIGMOD Int. Conf. on Management of 
Data (ACM Press, Tucson, Arizona, 1997), pp. 255–264. 

26. T. Fukuda, Y. Morimoto and S. Morishita, Data mining 
using two-dimensional optimized association rules: 
scheme, algorithms, and visualization, in Proc. of the 
ACM-SIGMOD Int. Conf. on the Management of Data 
(1996), pp. 12–13. 

27. T. Hong, C. Kuo, S. Chi and S. Wang, Mining Fuzzy 
Rules from Quantitative Data Based on the AprioriTid 
Algorithm, in Proc. of the ACM SAC 2000, Fuzzy 
Application and Soft Computing Track (Italy, 2000), pp. 
534-536. 

28. T. Hong, K. Lin and S. Wang, Fuzzy data mining for 
interesting generalized association rules. Fuzzy Sets and 
Systems 138 (2003) 255-269. 

29. U. M. Fayyad and K. B. Irani, Multi-interval 
discretization of continuous-valued attributes for 
classification learning, in Proc. of the 13th Int. Joint 
Conf. on Artificial Intelligence (1993), pp. 1022-1027. 

30. W. Au and K. C. C. Chan, An effective algorithm for 
discovering fuzzy rules in relational databases. in Proc. 
IEEE Int. Conf. Fuzzy Systems (FUZZ IEEE 98) (1998), 
pp. 1314-1319. 

31. W. Au and K. C. C. Chan, Classification with Degree of 
Membership: A Fuzzy Approach, in Proc. of the 1st 
IEEE Int. Conf. on Data Mining (San Jose, CA, 2001). 

32. W. Li, J. Han and J. Pei, CMAR: Accurate and efficient 
classification based on multiple classification rules, in 
Proc. 2001 IEEE Int. Conf. on Data Mining (ICDM 
2001) (California, 2001), pp. 369-376. 

33. X. Yin and J. Han, CPAR: Classification based on 
predictive association rules, in Proc. of 3rd SIAM Int. 
Conf. on Data Mining (SDM'03) (San Francisco, CA, 
2003). 

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 262 - 273

Published by Atlantis Press 
Copyright: the authors

273




